Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
ACS Omega ; 9(17): 19548-19559, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708262

RESUMO

Carbon dioxide (CO2) is a detrimental greenhouse gas and is the main contributor to global warming. In addressing this environmental challenge, a promising approach emerges through the utilization of deep eutectic solvents (DESs) as an ecofriendly and sustainable medium for effective CO2 capture. Chemically reactive DESs, which form chemical bonds with the CO2, are superior to nonreactive, physically based DESs for CO2 absorption. However, there are no accurate computational models that provide accurate predictions of the CO2 solubility in chemically reactive DESs. Here, we develop machine learning (ML) models to predict the solubility of CO2 in chemically reactive DESs. As training data, we collected 214 data points for the CO2 solubility in 149 different chemically reactive DESs at different temperatures, pressures, and DES molar ratios from published work. The physics-driven input features for the ML models include σ-profile descriptors that quantify the relative probability of a molecular surface segment having a certain screening charge density and were calculated with the first-principle quantum chemical method COSMO-RS. We show here that, although COSMO-RS does not explicitly calculate chemical reaction profiles, the COSMO-RS-derived σ-profile features can be used to predict bond formation. Of the models trained, an artificial neural network (ANN) provides the most accurate CO2 solubility prediction with an average absolute relative deviation of 2.94% on the testing sets. Overall, this work provides ML models that can predict CO2 solubility precisely and thus accelerate the design and application of chemically reactive DESs.

2.
ChemSusChem ; : e202301460, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38669480

RESUMO

The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.

3.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540744

RESUMO

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of ß-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze ß-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.


Assuntos
Basidiomycota , Celulases , Lignina/química , Lacase/metabolismo , Basidiomycota/metabolismo , Carboidratos , Açúcares , Éteres
4.
Optom Vis Sci ; 101(3): 151-156, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38546756

RESUMO

SIGNIFICANCE: Patients with Demodex blepharitis have a considerable symptomatic burden that negatively impacts their daily activities and well-being. Despite chronic manifestations of and problems associated with blepharitis that resulted in multiple visits to eye care providers, Demodex blepharitis remained underdiagnosed or misdiagnosed. PURPOSE: This study aimed to evaluate the effect of Demodex blepharitis on patients' daily activities and well-being. METHODS: This prospective, multicenter, observational study recruited 524 patients with Demodex blepharitis from 20 U.S. ophthalmology and optometry practices. Demodex blepharitis was diagnosed based on the presence of the following clinical manifestations in at least one eye: >10 collarettes on the upper lashes, at least mild lid margin erythema of the upper eyelid, and mite density of ≥1.0 mite/lash (upper and lower combined). Patients were asked to complete a questionnaire related to their symptoms, daily activities, and management approaches. RESULTS: The proportion of patients who experienced blepharitis symptoms for ≥2 years was 67.8%, and for ≥4 years, it was 46.5%. The three most bothersome symptoms ranked were "itchy eyes," "dry eyes," and "foreign body sensation." Overall, 77.4% of patients reported that Demodex blepharitis negatively affected their daily life. One-third (32.3%) of patients had visited a doctor for blepharitis at least two times, including 19.6% who visited at least four times. Despite having clinical manifestations of Demodex blepharitis confirmed by an eye care provider, 58.7% had never been diagnosed with blepharitis. Commonly used management approaches were artificial tears, warm compresses, and lid wipes. Among those who discontinued their regimen, 45.9% had discontinued because of either tolerability issues or lack of effectiveness. Among contact lens wearers, 64.3% of the patients either were uncomfortable wearing contact lenses or experienced vision changes "sometimes" or "frequently." CONCLUSION: Demodex blepharitis results in a significant negative impact on daily activities, creating a psychosocial and symptomatic burden on patients.


Assuntos
Blefarite , Lentes de Contato , Humanos , Estudos Prospectivos , Blefarite/diagnóstico , Blefarite/terapia , Pálpebras , Lubrificantes Oftálmicos
5.
Cornea ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334465

RESUMO

PURPOSE: The aim of this study was to evaluate the long-term outcomes of lotilaner ophthalmic solution, 0.25%, in the treatment of Demodex blepharitis. METHODS: This observational, extension study included patients with Demodex blepharitis (N = 239) who completed the Saturn-1 study and presented for the day 180 visit. All participants were assessed at days 180 and 365 after the initiation of 6-week treatment with the study drug or its vehicle. RESULTS: The proportion of patients with 0 to 2 collarettes (grade 0) was significantly higher in the study group (N = 128 patients) than in the control group (N = 111 patients) (39.8% vs. 2.7% at day 180 and 23.5% vs. 2.9% at day 365; P < 0.0001). Similarly, the proportion of patients with ≤10 collarettes (collarette grade 0-1) in the study group was significantly higher than in the control group (70.3% vs. 18.0% at day 180 and 62.6% vs. 21.9% at day 365; P < 0.0001). In the study group, erythema continued to improve even after completion of the 6-week lotilaner treatment. No serious ocular adverse events were observed in the study group, and there was 1 treatment-related ocular adverse event in the study group, which was considered mild. CONCLUSIONS: After 6-week treatment with lotilaner ophthalmic solution, 0.25%, for Demodex blepharitis, no long-term concerns were observed during 1 year of follow-up. A high proportion of patients with 0 to 2 collarettes (grade 0) or ≤10 collarettes (collarette grade of 0 or 1) was observed throughout 1 year of follow-up, indicating that the efficacy of lotilaner ophthalmic solution, 0.25%, against Demodex blepharitis may last well after completion of therapy.

6.
Metab Eng ; 82: 157-170, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369052

RESUMO

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Carbono/metabolismo , Engenharia Metabólica
7.
Ultrason Sonochem ; 102: 106721, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103370

RESUMO

Most ultrasound-based processes root in empirical approaches. Because nearly all advances have been conducted in aqueous systems, there exists a paucity of information on sonoprocessing in other solvents, particularly ionic liquids (ILs). In this work, we modelled an ultrasonic horn-type sonoreactor and investigated the effects of ultrasound power, sonotrode immersion depth, and solvent's thermodynamic properties on acoustic cavitation in nine imidazolium-based and three pyrrolidinium-based ILs. The model accounts for bubbles, acoustic impedance mismatch at interfaces, and treats the ILs as incompressible, Newtonian, and saturated with argon. Following a statistical analysis of the simulation results, we determined that viscosity and ultrasound input power are the most significant variables affecting the intensity of the acoustic pressure field (P), the volume of cavitation zones (V), and the magnitude of the maximum acoustic streaming surface velocity (u). V and u increase with the increase of ultrasound input power and the decrease in viscosity, whereas the magnitude of negative P decreases as ultrasound power and viscosity increase. Probe immersion depth positively correlates with V, but its impact on P and u is insignificant. 1-alkyl-3-methylimidazolium-based ILs yielded the largest V and the fastest acoustic jets - 0.77 cm3 and 24.4 m s-1 for 1-ethyl-3-methylimidazolium chloride at 60 W. 1-methyl-3-(3-sulfopropyl)-imidazolium-based ILs generated the smallest V and lowest u - 0.17 cm3 and 1.7 m s-1 for 1-methyl-3-(3-sulfopropyl)-imidazolium p-toluene sulfonate at 20 W. Sonochemiluminescence experiments validated the model.

8.
Appl Environ Microbiol ; 89(10): e0085223, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37724856

RESUMO

Pseudomonas putida have emerged as promising biocatalysts for the conversion of sugars and aromatic compounds obtained from lignocellulosic biomass. Understanding the role of carbon catabolite repression (CCR) in these strains is critical to optimize biomass conversion to fuels and chemicals. The CCR functioning in P. putida M2, a strain capable of consuming both hexose and pentose sugars as well as aromatic compounds, was investigated by cultivation experiments, proteomics, and CRISPRi-based gene repression. Strain M2 co-utilized sugars and aromatic compounds simultaneously; however, during cultivation with glucose and aromatic compounds (p-coumarate and ferulate) mixture, intermediates (4-hydroxybenzoate and vanillate) accumulated, and substrate consumption was incomplete. In contrast, xylose-aromatic consumption resulted in transient intermediate accumulation and complete aromatic consumption, while xylose was incompletely consumed. Proteomics analysis revealed that glucose exerted stronger repression than xylose on the aromatic catabolic proteins. Key glucose (Eda) and xylose (XylX) catabolic proteins were also identified at lower abundance during cultivation with aromatic compounds implying simultaneous catabolite repression by sugars and aromatic compounds. Reduction of crc expression via CRISPRi led to faster growth and glucose and p-coumarate uptake in the CRISPRi strains compared to the control, while no difference was observed on xylose+p-coumarate. The increased abundances of Eda and amino acid biosynthesis proteins in the CRISPRi strain further supported these observations. Lastly, small RNAs (sRNAs) sequencing results showed that CrcY and CrcZ homologues levels in M2, previously identified in P. putida strains, were lower under strong CCR (glucose+p-coumarate) condition compared to when repression was absent (p-coumarate or glucose only).IMPORTANCEA newly isolated Pseudomonas putida strain, P. putida M2, can utilize both hexose and pentose sugars as well as aromatic compounds making it a promising host for the valorization of lignocellulosic biomass. Pseudomonads have developed a regulatory strategy, carbon catabolite repression, to control the assimilation of carbon sources in the environment. Carbon catabolite repression may impede the simultaneous and complete metabolism of sugars and aromatic compounds present in lignocellulosic biomass and hinder the development of an efficient industrial biocatalyst. This study provides insight into the cellular physiology and proteome during mixed-substrate utilization in P. putida M2. The phenotypic and proteomics results demonstrated simultaneous catabolite repression in the sugar-aromatic mixtures, while the CRISPRi and sRNA sequencing demonstrated the potential role of the crc gene and small RNAs in carbon catabolite repression.


Assuntos
Repressão Catabólica , Pseudomonas putida , Açúcares/metabolismo , Xilose/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Glucose/metabolismo , Hexoses/metabolismo , Pentoses/metabolismo , Carbono/metabolismo
9.
Cell Rep ; 42(9): 113087, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37665664

RESUMO

Maximizing the production of heterologous biomolecules is a complex problem that can be addressed with a systems-level understanding of cellular metabolism and regulation. Specifically, growth-coupling approaches can increase product titers and yields and also enhance production rates. However, implementing these methods for non-canonical carbon streams is challenging due to gaps in metabolic models. Over four design-build-test-learn cycles, we rewire Pseudomonas putida KT2440 for growth-coupled production of indigoidine from para-coumarate. We explore 4,114 potential growth-coupling solutions and refine one design through laboratory evolution and ensemble data-driven methods. The final growth-coupled strain produces 7.3 g/L indigoidine at 77% maximum theoretical yield in para-coumarate minimal medium. The iterative use of growth-coupling designs and functional genomics with experimental validation was highly effective and agnostic to specific hosts, carbon streams, and final products and thus generalizable across many systems.

10.
Ophthalmology ; 130(10): 1015-1023, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37285925

RESUMO

PURPOSE: To evaluate the safety and efficacy of lotilaner ophthalmic solution 0.25% compared with vehicle for the treatment of Demodex blepharitis. DESIGN: Prospective, randomized, double-masked, vehicle-controlled, multicenter, phase 3 clinical trial. PARTICIPANTS: Four hundred twelve patients with Demodex blepharitis were assigned randomly in a 1:1 ratio to receive either lotilaner ophthalmic solution 0.25% (study group) or vehicle without lotilaner (control group). METHODS: Patients with Demodex blepharitis treated at 21 United States clinical sites were assigned either to the study group (n = 203) to receive lotilaner ophthalmic solution 0.25% or to the control group (n = 209) to receive vehicle without lotilaner bilaterally twice daily for 6 weeks. Collarettes and erythema were graded for each eyelid at screening and at all visits after baseline. At screening and on days 15, 22, and 43, 4 or more eyelashes were epilated from each eye, and the number of Demodex mites present on the lashes was counted with a microscope. Mite density was calculated as the number of mites per lash. MAIN OUTCOME MEASURES: Outcome measures included collarette cure (collarette grade 0), clinically meaningful collarette reduction to 10 collarettes or fewer (grade 0 or 1), mite eradication (0 mites/lash), erythema cure (grade 0), composite cure (grade 0 for collarettes as well as erythema), compliance with the drop regimen, drop comfort, and adverse events. RESULTS: At day 43, the study group achieved a statistically significant (P < 0.0001) higher proportion of patients with collarette cure (56.0% vs. 12.5%), clinically meaningful collarette reduction to 10 collarettes or fewer (89.1% vs. 33.0%), mite eradication (51.8% vs. 14.6%), erythema cure (31.1% vs. 9.0%), and composite cure (19.2% vs. 4.0%) than the control group. High compliance with the drop regimen (mean ± standard deviation, 98.7 ± 5.3%) in the study group was observed, and 90.7% of patients found the drops to be neutral to very comfortable. CONCLUSIONS: Twice-daily treatment with lotilaner ophthalmic solution 0.25% for 6 weeks generally was safe and well tolerated and met the primary end point and all secondary end points for the treatment of Demodex blepharitis compared with vehicle control. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Assuntos
Blefarite , Infecções Oculares Parasitárias , Pestanas , Infestações por Ácaros , Ácaros , Animais , Humanos , Infestações por Ácaros/tratamento farmacológico , Estudos Prospectivos , Soluções Oftálmicas , Blefarite/tratamento farmacológico , Blefarite/diagnóstico , Eritema/complicações , Infecções Oculares Parasitárias/diagnóstico , Infecções Oculares Parasitárias/tratamento farmacológico
11.
Nat Microbiol ; 8(4): 596-610, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36894634

RESUMO

Lignocellulose forms plant cell walls, and its three constituent polymers, cellulose, hemicellulose and lignin, represent the largest renewable organic carbon pool in the terrestrial biosphere. Insights into biological lignocellulose deconstruction inform understandings of global carbon sequestration dynamics and provide inspiration for biotechnologies seeking to address the current climate crisis by producing renewable chemicals from plant biomass. Organisms in diverse environments disassemble lignocellulose, and carbohydrate degradation processes are well defined, but biological lignin deconstruction is described only in aerobic systems. It is currently unclear whether anaerobic lignin deconstruction is impossible because of biochemical constraints or, alternatively, has not yet been measured. We applied whole cell-wall nuclear magnetic resonance, gel-permeation chromatography and transcriptome sequencing to interrogate the apparent paradox that anaerobic fungi (Neocallimastigomycetes), well-documented lignocellulose degradation specialists, are unable to modify lignin. We find that Neocallimastigomycetes anaerobically break chemical bonds in grass and hardwood lignins, and we further associate upregulated gene products with the observed lignocellulose deconstruction. These findings alter perceptions of lignin deconstruction by anaerobes and provide opportunities to advance decarbonization biotechnologies that depend on depolymerizing lignocellulose.


Assuntos
Celulose , Lignina , Lignina/metabolismo , Anaerobiose , Celulose/metabolismo , Biomassa , Fungos/genética , Fungos/metabolismo
12.
J Fungi (Basel) ; 9(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36983539

RESUMO

Phlebia radiata is a widespread white-rot basidiomycete fungus with significance in diverse biotechnological applications due to its ability to degrade aromatic compounds, xenobiotics, and lignin using an assortment of oxidative enzymes including laccase. In this work, a chemical screen with 480 conditions was conducted to identify chemical inducers of laccase expression in P. radiata. Among the chemicals tested, phenothiazines were observed to induce laccase activity in P. radiata, with promethazine being the strongest laccase inducer of the phenothiazine-derived compounds examined. Secretomes produced by promethazine-treated P. radiata exhibited increased laccase protein abundance, increased enzymatic activity, and an enhanced ability to degrade phenolic model lignin compounds. Transcriptomics analyses revealed that promethazine rapidly induced the expression of genes encoding lignin-degrading enzymes, including laccase and various oxidoreductases, showing that the increased laccase activity was due to increased laccase gene expression. Finally, the generality of promethazine as an inducer of laccases in fungi was demonstrated by showing that promethazine treatment also increased laccase activity in other relevant fungal species with known lignin conversion capabilities including Trametes versicolor and Pleurotus ostreatus.

13.
Molecules ; 28(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36771097

RESUMO

The range of applications for industrial hemp has consistently increased in various sectors over the years. For example, hemp hurd can be used as a resource to produce biodegradable packaging materials when incorporated into a fungal mycelium composite, a process that has been commercialized. Although these packaging materials can be composted after usage, they may present an opportunity for valorization in a biorefinery setting. Here, we demonstrate the potential of using this type of discarded packaging composite as a feedstock for biofuel production. A one-pot ionic liquid-based biomass deconstruction and conversion process was implemented, and the results from the packaging material were compared with those obtained from untreated hemp hurd. At a 120 °C reaction temperature, 7.5% ionic liquid loading, and 2 h reaction time, the packaging materials showed a higher lignocellulosic sugar yield and sugar concentrations than hemp hurd. Hydrolysates prepared from packaging materials also promoted production of higher titers (1400 mg/L) of the jet-fuel precursor bisabolene when used to cultivate an engineered strain of the yeast Rhodosporidium toruloides. Box-Behnken experiments revealed that pretreatment parameters affected the hemp hurd and packaging materials differently, evidencing different degrees of recalcitrance. This study demonstrated that a hemp hurd-based packaging material can be valorized a second time once it reaches the end of its primary use by supplying it as a feedstock to produce biofuels.


Assuntos
Cannabis , Líquidos Iônicos , Lignina , Açúcares , Tecnologia , Biocombustíveis , Biomassa
14.
Chemistry ; 29(27): e202300330, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36746778

RESUMO

The efficient utilization of lignin, the direct source of renewable aromatics, into value-added renewable chemicals is an important step towards sustainable biorefinery practices. Nevertheless, owing to the random heterogeneous structure and limited solubility, lignin utilization has been primarily limited to burning for energy. The catalytic depolymerization of lignin has been proposed and demonstrated as a viable route to sustainable biorefinery, however, low yields and poor selectivity of products, high char formation, and limited to no recycling of transition-metal-based catalyst involved in lignin depolymerization demands attention to enable practical-scale lignocellulosic biorefineries. In this study, we demonstrate the catalytic depolymerization of ionic liquid-based biorefinery poplar lignin into guaiacols over a reusable zirconium phosphate supported palladium catalyst. The essence of the study lies in the high conversion (>80 %), minimum char formation (7-16 %), high yields of guaiacols (up to 200 mg / g of lignin), and catalyst reusability. Both solid residue, liquid stream, and gaseous products were thoroughly characterized using ICP-OES, PXRD, CHN analysis, GC-MS, GPC, and 2D NMR to understand the hydrogenolysis pathway.

15.
Microb Biotechnol ; 16(3): 645-661, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36691869

RESUMO

Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.


Assuntos
Pseudomonas putida , Pseudomonas putida/genética , Vias Biossintéticas , Açúcares/metabolismo
16.
Sci Rep ; 13(1): 271, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609448

RESUMO

Lignin, the second most abundant biopolymer found in nature, has emerged as a potential source of sustainable fuels, chemicals, and materials. Finding suitable solvents, as well as technologies for efficient and affordable lignin dissolution and depolymerization, are major obstacles in the conversion of lignin to value-added products. Certain ionic liquids (ILs) are capable of dissolving and depolymerizing lignin but designing and developing an effective IL for lignin dissolution remains quite challenging. To address this issue, the COnductor-like Screening MOdel for Real Solvents (COSMO-RS) model was used to screen 5670 ILs by computing logarithmic activity coefficients (ln(γ)) and excess enthalpies (HE) of lignin, respectively. Based on the COSMO-RS computed thermodynamic properties (ln(γ) and HE) of lignin, anions such as acetate, methyl carbonate, octanoate, glycinate, alaninate, and lysinate in combination with cations like tetraalkylammonium, tetraalkylphosphonium, and pyridinium are predicted to be suitable solvents for lignin dissolution. The dissolution properties such as interaction energy between anion and cation, viscosity, Hansen solubility parameters, dissociation constants, and Kamlet-Taft parameters of selected ILs were evaluated to assess their propensity for lignin dissolution. Furthermore, molecular dynamics (MD) simulations were performed to understand the structural and dynamic properties of tetrabutylammonium [TBA]+-based ILs and lignin mixtures and to shed light on the mechanisms involved in lignin dissolution. MD simulation results suggested [TBA]+-based ILs have the potential to dissolve lignin because of their higher contact probability and interaction energies with lignin when compared to cholinium lysinate.


Assuntos
Líquidos Iônicos , Líquidos Iônicos/química , Lignina/química , Solventes/química , Simulação de Dinâmica Molecular , Ânions/química , Cátions/química
17.
Curr Opin Biotechnol ; 79: 102881, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36603501

RESUMO

Self-driving labs (SDLs) combine fully automated experiments with artificial intelligence (AI) that decides the next set of experiments. Taken to their ultimate expression, SDLs could usher a new paradigm of scientific research, where the world is probed, interpreted, and explained by machines for human benefit. While there are functioning SDLs in the fields of chemistry and materials science, we contend that synthetic biology provides a unique opportunity since the genome provides a single target for affecting the incredibly wide repertoire of biological cell behavior. However, the level of investment required for the creation of biological SDLs is only warranted if directed toward solving difficult and enabling biological questions. Here, we discuss challenges and opportunities in creating SDLs for synthetic biology.


Assuntos
Inteligência Artificial , Biologia Sintética , Humanos
18.
Environ Microbiol ; 25(2): 493-504, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36465038

RESUMO

The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.


Assuntos
Pentoses , Pseudomonas putida , Pentoses/metabolismo , Xilose/metabolismo , Arabinose/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Estresse Oxidativo
19.
Anal Biochem ; 662: 114997, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435200

RESUMO

We described a mass spectrometry-based assay to rapidly quantify the production of primary alcohols directly from cell cultures. This novel assay used the combination of TEMPO-based oxidation chemistry and oxime ligation, followed by product analysis based on Nanostructure-Initiator Mass Spectrometry. This assay enables quantitative monitor both C5 to C18 alcohols as well as glucose and gluconate in the growth medium to support strain characterization and optimization. We find that this assay yields similar results to gas chromatography for isoprenol production but required much less acquisition time per sample. We applied this assay to gain new insights into P. Putida's utilization of alcohols and find that this strain largely could not grow on heptanol and octanol.


Assuntos
Nanoestruturas , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos , Nanoestruturas/química , Glucose , Etanol
20.
Biotechnol Biofuels Bioprod ; 15(1): 145, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36567331

RESUMO

BACKGROUND: Lignocellulosic resources are promising feedstocks for the manufacture of bio-based products and bioenergy. However, the inherent recalcitrance of biomass to conversion into simple sugars currently hinders the deployment of advanced bioproducts at large scale. Lignin is a primary contributor to biomass recalcitrance as it protects cell wall polysaccharides from degradation and can inhibit hydrolytic enzymes via non-productive adsorption. Several engineering strategies have been designed to reduce lignin or modify its monomeric composition. For example, expression of bacterial 3-dehydroshikimate dehydratase (QsuB) in poplar trees resulted in a reduction in lignin due to redirection of metabolic flux toward 3,4-dihydroxybenzoate at the expense of lignin. This reduction was accompanied with remarkable changes in the pools of aromatic compounds that accumulate in the biomass. RESULTS: The impact of these modifications on downstream biomass deconstruction and conversion into advanced bioproducts was evaluated in the current study. Using ionic liquid pretreatment followed by enzymatic saccharification, biomass from engineered trees released more glucose and xylose compared to wild-type control trees under optimum conditions. Fermentation of the resulting hydrolysates using Rhodosporidium toruloides strains engineered to produce α-bisabolene, epi-isozizaene, and fatty alcohols showed no negative impact on cell growth and yielded higher titers of bioproducts (as much as + 58%) in the case of QsuB transgenics trees. CONCLUSION: Our data show that low-recalcitrant poplar biomass obtained with the QsuB technology has the potential to improve the production of advanced bioproducts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA